Category: Reproducibility

No scientific progress without non-reproducibility?

Slides of my talk at the FENS Satellite-Event ‘How reproducible are your data?’ at Freie Universität, 6. July 2018, Berlin


  1. Let’s get this out of the way: Reproducibility is a cornerstone of science: Bacon, Boyle, Popper, Rheinberger
  2. A ‘lexicon’ of reproducibility: Goodman et al.
  3. What do we mean by ‘reproducible’? Open Science collaboration, Psychology replication
  4. Reproducible – non reproducible – A false dichotomy: Sizeless science, almost as bad as ‘significant vs non-significant’
  5. The emptiness of failed replication? How informative is non-replication?
  6. Hidden moderators – Contextual sensitivity – Tacit knowledge
  7. “Standardization fallacy”: Low external validity, poor reproducibility
  8. The stigma of nonreplication (‘incompetence’)- The stigma of the replicator (‘boring science’).
  9. How likely is strict replication?
  10. Non-reproducibility must occur at the scientific frontier: Low base rate (prior probability), low hanging fruit already picked: Many false positives – non-reproducibility
  11. Confirmation – weeding out the false positives of exploration
  12. Reward the replicators and the replicated – fund replications. Do not stigmatize non-replication, or the replicators.
  13. Resolving the tension: The Siamese Twins of discovery & replication
  14. Conclusion: No scientific progress without nonreproducibility: Essential non-reproducibility vs . detrimental non-reproducibility
  15. Further reading

Open Science Collaboration, Psychology Replication, Science. 2015 ;349(6251):aac4716

Goodman et al. Sci Transl Med. 2016;8:341ps12.

When you come to a fork in the road: Take it

It is for good reason that researchers are the object of envy. When not stuck with bothersome tasks such as grant applications, reviews, or preparing lectures, they actually get paid for pursuing their wildest ideas! To boldly go where no human has gone before! We poke about through scientific literature, carry out pilot experiments that surprisingly almost always succeed. Then we do a series of carefully planned and costly experiments. Sometimes they turn out well, often not, but they do lead us into the unknown. This is how ideas become hypotheses; one hypothesis leads to those that follow, and voila, low and behold, we confirm them! In the end, sometimes only after several years and considerable wear and tear on personnel and material, we manage then to weave a “story” out of them (see also). Through a complex chain of results the story closes with a “happy end”, perhaps in the form of a new biological mechanism, but at least as a little piece to fit the puzzle, and it is always presented to the world by means of a publication. Sometimes even in one of the top journals. Continue reading